

Wellington 19 ES08018 Barcelona T +34 933 09 34 04 qualprod@itec.cat itec.cat

European Technical Assessment

ETA 09/0118 of 04.09.2019

General part

Technical Assessment Body issuing the ETA: ITeC

ITeC has been designated according to Article 29 of Regulation (EU) No 305/2011 and is member of EOTA (European Organisation for Technical Assessment)

Trade name of the construction product	PF-ALU-CLA kit
Product family to which the construction product belongs	Subframe and fixing kit for fastening cladding elements and also external wall elements in ventilated or non-ventilated façades
Manufacturer	MECANISMOS, ANCLAJES Y SISTEMAS AUTOPORTANTES SL - MASA
	C/ Compositor Bach, 14-16 Pol. Ind. Can Jardí ES-08191 RUBÍ Barcelona, Spain
Manufacturing plant(s)	C/ Compositor Bach, 14-16 Pol. Ind. Can Jardí ES-08191 RUBÍ Barcelona, Spain
This European Technical Assessment contains	36 pages including 6 annexes which form an integral part of this assessment.
This European Technical Assessment is issued in accordance with Regulation (EU) 305/2011, on the basis of	European Assessment Document, EAD 090034-00-0404 Kit composed by subframe and fixings for fastening cladding and external wall elements.
This version replaces	ETA 09/0118 issued on 07.06.2013.

General comments

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific parts of the European Technical Assessment

1 Technical description of the product

PF-ALU-CLA kit for fastening skin elements¹ (cladding elements and external wall elements) consists of:

- Skin element fixing device according to Type 1 given in EAD 090034-00-0404:
 - 1. Stainless steel fixing devices GR-CLA for fastening skin elements.
 - 2. Stainless steel drilling screws between the fixing devices and the subframe profile.
 - 3. Ancillary component: plastic dowel protector.
- Subframe:
 - 4. Aluminium alloy vertical profiles PF-AL-U.
 - 5. Brackets:
 - Aluminium alloy brackets ES-ALU-A, ES-ALU-V and ES-ALU-E.
 - Stainless steel brackets ES-INOX-E and ES-INOX-A.
 - 6. Stainless steel drilling screws between the subframe profiles and brackets.

The GR-CLA fixing devices are stainless steel dowel anchors for skin elements with dowel hole.

One fixing bears two skin elements. And four fixings are needed to support one skin element.

The PF-ALU-CLA kit is made of mechanical components. Adhesives are not needed for assembly.

The PF-ALU-CLA kit is a non-load bearing construction element. It does not contribute to the stability of the structure on which it is installed.

The following ventilated façade elements or components are not considered in this ETA:

- The skin elements2.
- The fixings between the subframe and the supporting structure³.
- The other layers of the façade, like insulation and internal layers.

The geometry characteristics and the material properties of each component are given in annexes indicated in the following table:

Table 1.1: Annexes of geometry characteristics and material properties of the kit components.

Component	Geometry characteristics and material annexes
Skin fixing devices GR-CLA	Annex 2
Vertical Profiles	Annex 3
Brackets	Annex 4
Drilling screws	Annex 5

¹ From now on this term refers to both cladding elements and external wall elements.

² If the skin elements are cladding elements, other EADs may apply (e.g. EAD 090062, EAD 090020, etc.).

³ The term "supporting structure" refers to both of followings descriptions:

⁻ The wall, which in itself already meets the airtightness and mechanical strength requirements (resistance to static and dynamic loads). The substrate walls are made of masonry (clay, concrete or stone), concrete (cast on site or as prefabricated panels), timber or metal frame.

The supporting structure of the building, which in itself does not meet the airtightness requirement but meets the mechanical strength requirements (resistance to static and dynamic loads). Usually, the supporting structures of the building are made of concrete (cast on site or prefabricated), timber or metal frame.

In this case, the airtightness requirements are met by the internal leaves of the façade.

2 Specification of the intended use(s) in accordance with the applicable European Assessment Document (hereinafter EAD)

PF-ALU-CLA kit is intended to be used as mechanical fastening of skin elements (claddings or external wall elements) in façades with air space, ventilated or not, and intended to be used on supporting structures³ which meet the mechanical strength requirements.

The PF-ALU-CLA kit is intended to be used for the fixing of skin elements (e.g. natural stone according to EN 1469) with dowel hole (see section A6.1 of Annex 6 for more information on the skin element specifications).

The skin elements are not part of the kit object of this ETA. The safety in use of the skin elements has to be assessed separately.

The provisions made in this European Technical Assessment are based on an assumed working life of at least 25 years for PF-ALU-CLA kit. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

PF-ALU-CLA kit is made of non-load bearing construction components. They do not contribute directly to the stability of the wall on which they are installed.

PF-ALU-CLA kit is not intended to ensure the airtightness of the building envelope.

Detailed information and data regarding design, installation, maintenance and repair criteria are given in Annex 6.

3 Performance of the product and reference to the methods used for its assessment

The assessment of PF-ALU-CLA kit for the intended use was performed following the EAD 090034-00-0404 *Kit composed by subframe and fixings for fastening cladding and external wall elements*.

Table 3.1: Summary of the PF-ALU-CLA kit performances (see also detailed performances in relevant sections).

Product: PF-ALU-CLA kit		Intended use:		skin elements (claddings or in façades with air space,	
Basic Works ETA Requirement section		Essential characteri	stic	Performance	
BWR 2 Safety in case of fire 3.1 Reaction to fire			A1		
	3.2	Wind load resistance		3000 Pa (suction) 4000 Pa (pressure)	
	3.3	Resistance to vertical	load of the kit	≤ 0,06 mm after 1 hour	
	3.4	Resistance to vertical	load of skin element fixing	See table 3.3	
	3.5	Resistance to horizon	tal load of skin element fixing	See table 3.4	
		Resistance to pulsatir fixings	ng load of skin element	Not assessed	
BWR 4 Safety and accessibili	ty	Resistance of skin element fixings in case of inaccuracies of installation		Not relevant	
in use	3.6	Pull-through resistance	e of fixings from profile	10,0 kN	
	3.7	Pull-out resistance of	subframe fixings from profile	3,47 kN	
	3.8	Inertia and resistance	of profiles	See Annex 3	
	3.9	Resistance of vertical	load of brackets	See table 3.7	
	3.10	Resistance of horizon	tal load of brackets	See table 3.8	
	3.11	Mechanical character	istics of subframe fixings	See table 3.6	
	3.12	Corrosion	<u> </u>	See section 3.12	

Complementary information:

Requirements with respect to the mechanical resistance and stability of non-load bearing parts of the works are not included in the Basic Works Requirement *Mechanical resistance and stability* (BWR 1) but are treated under the Basic Works Requirement *Safety and accessibility in use* (BWR 4).

The fire resistance requirement is applicable to the wall (made of masonry, concrete, timber or metal frame) and not to the PF-ALU-CLA kit itself.

3.1 Reaction to fire

Reaction to fire of PF-ALU-CLA kit according to Commission Delegated Regulation (EU) 2016/364 and EN 13501-1 is Class A1 without need of testing according to Decision 96/603/EC as amended.

The dowel protectors can be considered small components, so they can be ignored and do not need to be tested for their reaction to fire performance.

Note: A European reference fire scenario has not been laid down for façades. In some Member States, the classification of external wall claddings according to EN 13501-1 might not be sufficient for the use in façades. An additional assessment of external wall claddings according to national provisions (e.g. on the basis of a large-scale test) might be necessary to comply with Member State regulations, until the existing European classification system has been completed.

3.2 Wind load resistance

PF-ALU-CLA kit wind load resistance has been determined according to section 2.2.2 of EAD 090034-00-0404 considering the wind suction and pressure resistance tests and the mechanical resistance of the components (see sections 3.4 to 3.11). Test results and calculated values for the tested are given in table 3.2.

For other assembled systems, wind load resistance obtained by calculation on the basis of the mechanical resistance of the kit components should not be higher than the maximum load obtained in the tests.

Table 3.2: Test results and calculated values for tested specimen.

Test results (1)				Calculated values
Test	Maximum load Q (Pa)	Deflection under maximum load (mm)	Deflection after 1 min recovery (mm)	Load (Pa) (4)
Suction	3000 (2)	21,6 (3)	3,28	4000
Pressure	4000 (2)	9,65 (3)	3,03	1690

⁽¹⁾ Tested specimen: skin element 910x794x30 mm; fixing device GR-CLA M8 in horizontal joint position; three PF-ALU-80 vertical profiles (minimum vertical profile dimension for the span 2700 mm), span 546 mm; brackets ES-ALU-A/V 87/200, span 2700 mm. Characteristics of components are indicated in Annexes 2 and 3.

3.3 Resistance to vertical load of the kit

Resistance to vertical load of PF-ALU-CLA kit has been assessed according to section 2.2.3 of EAD 090034-00-0404.

The maximum vertical dead load considered in the test is 1,43 kN for the PF-ALU-CLA kit in horizontal joint position (each fixing device supports 0,71 kN) and 1,54 kN for the PF-ALU-CLA kit in vertical joint position (each fixing device supports 0,77 kN). Both values are higher than those indicated in table 3.3 as the characteristic values F_c at 1 mm irreversible deformation.

The maximum deflection obtained has been 0,06 mm after 1 hour.

3.4 Resistance to vertical load of skin element fixing

Resistance to vertical load of GR-CLA fixing devices has been assessed according to section 2.2.4 of EAD 090034-00-0404. Mean and characteristic values are given in table 3.3.

⁽²⁾ This load has been obtained at the test equipment limit without PF-ALU-PL kit failure.

⁽³⁾ Deflection measured at the central vertical profile.

⁽⁴⁾ Calculated load for tested specimen configuration considering 1 mm of irreversible deformation (F_c) of the fixing device. Calculated values for tested specimen composition using simple beam formulas.

Table 3.3: Resistance to vertical load of skin element fixing GR-CLA.

		n irreversible nation		d	
Fixing device type ⁴	F _m (kN)	Fc (kN)	F _{u,m} (kN)	F _{u,c} (kN)	Maximum deformation (mm)
GR-CLA 20/3 M8 (horizontal joint position)	0,71	0,57	1,42	1,21	18,5
GR-CLA 20/3 M8 (vertical joint position)	0,77	0,60	1,86	1,52	25,4
GR-CLA 20/3 M10 (horizontal joint position)	0,96	0,75	1,64	1,30	8,7
GR-CLA 20/3 M10 (vertical joint position)	0,60	0,42	2,44	2,03	28,0

Where: F_m is the mean value.

3.5 Resistance to horizontal load of skin element fixing

Resistance to horizontal load of GR-CLA fixing devices has been assessed according to section 2.2.5 of EAD 090034-00-0404. Mean and characteristic values are given in table 3.4.

Table 3.4: Resistance to horizontal load of skin element fixing GR-CLA.

		n irreversible nation		Failure load		
Fixing device type ⁴	F _m (kN)	Fc (kN)	F _{u,m} (kN)	Fu,c (kN)	Maximum deformation (mm)	
GR-CLA 20/3 M8	0,96	0,61	2,32	2,06	9,6	
GR-CLA 20/3 M10	1,06	0,87	2,52	2,20	8,1	

Where: F_m is the mean value.

3.6 Pull-through resistance of fixings from profile

Pull-through resistance of fixings from profiles has been assessed according to section 2.2.8 of EAD 090034-00-0404. Mean and characteristic values are given in table 3.5.

Table 3.5: Pull-through resistance failure load value.

Profile type ⁵ (*)	R _s (kN)	R _{sc} (kN)
PF-AL-U-40		
PF-AL-U-60		
PF-AL-U-80	40.7	10.0
PF-AL-U-100	10,7	10,0
PF-AL-T-60		
PF-AL-T-80		

R_s is the mean value. Where:

R_{sc} is the characteristic value given at 75% confidence that 95% of test results will be higher than this value. (*) The drilling screw used in the tests is the stainless steel quality A2-70 indicated in Annex 6.

F_c is the characteristic value given at 75% confidence that 95% of test results will be higher than this value.

F_c is the characteristic value given at 75% confidence that 95% of test results will be higher than this value.

⁴ These components are defined in Annex 2.

⁵ These components are defined in Annex 3.

3.7 Pull-out resistance of fixings from profile

Pull-through resistance of fixings from profiles has been assessed according to section 2.2.9 of EAD 090034-00-0404. Mean and characteristic values are given in table 3.6.

Table 3.6: Pull-out resistance and shear strength of subframe screws.

Drilling screw type _	Pul	l-out	Shear s	trength
	R _m (kN)	R _c (kN)	R _m (kN)	Rc (kN)
M6x25 PB (*)	3,96	3,47	8,96	7,96

R_m is the mean value.

 R_c is the characteristic value given at 75% confidence that 95% of test results will be higher than this value.

3.8 Inertia and resistance of profiles

The following characteristics of the profiles are given in Annex 3:

- Form and dimensions of the profiles sections.
- Inertia of the profiles sections.
- Minimum elastic limit of the profiles material.

3.9 Resistance to vertical load of brackets

Resistance to vertical load of brackets has been assessed according to section 2.2.11 of EAD 090034-00-0404. Mean and characteristic values are given in table 3.7.

Table 3.7: Bracket resistance to vertical load.

Bracket type	⁶ (mm)	Resistance (kN) at 1 mm of displacement (**)		mm of at 3 mm of at $\Delta L = 0.2\% \cdot L$ resistance (kl		at ΔL = 0,2%·L mm of permanent		ce (kN)	
		Fm	Fc	Fm	Fc	Fm	Fc	Fm	Fc
	45/100	3,9	2,7	13,3	10,3	1,8	0,5	25,0	25,0
	67/100 (*) 87/100	2,6	2,2	5,2	4,1	1,8	1,4	13,0	11,2
50 4111 4	117/100	2,6	1,4	5,7	4,8	2,8	0,3	15,0	15,0
ES-ALU-A ES-ALU-V	148/100	1,2	0,7	3,1	2,3	1,2	0,1	12,5	12,5
E3-ALU-V	177/100	1,3	1,1	2,9	2,5	2,4	1,7	10,0	10,0
	208/100	1,0	0,5	2,1	1,5	2,1	0,6	7,5	7,5
	238/100 (*) 267/100	0,7	0,4	1,7	1,5	2,7	1,6	6,5	5,6
EO INOV A	238/100 (*) 267/100	0,8	0,6	1,5	1,3	1,5	1,2	2,9	2,8
ES-INOX-A	296/100 (*) 325/100	0,7	0,4	1,2	1,0	1,7	1,4	2,4	2,2
	67/200 (*) 87/200	6,8	5,5	17,4	13,6	4,1	2,8	30,9	28,7
	117/200	4,8	2,7	12,3	8,2	2,4	2,0	25,0	25,0
ES-ALU-E	148/200	3,2	2,7	8,3	6,3	3,3	3,0	17,5	17,5
	177/200	2,0	1,2	5,5	4,5	1,9	1,2	12,5	12,5
	208/200	2,4	1,7	5,5	3,6	3,1	0,8	13,3	8,5
	238/200 (*) 267/200	2,9	1,6	5,8	3,1	7,5	7,1	20,0	19,4

⁶ These components are defined in Annex 4.

^(*) The drilling screw used in the tests is the stainless steel quality A2-70 indicated in Annex 5.

Table 3.7: Bracket resistance to vertical load.

Bracket type ⁶ (mm)		at 1 n	esistance (kN) at 1 mm of splacement (**)		Resistance (kN) at 3 mm of displacement (**)		Resistance (kN) at ΔL = 0,2%·L mm of permanent deflection (**)		Ultimate resistance (kN) (**)	
			Fc	Fm	Fc	Fm	Fc	Fm	Fc	
ES INOV E	238/200 (*) 267/200	2,9	2,0	5,8	4,5	6,2	3,4	10,0	8,6	
ES-INOX-E	296/200 (*) 325/200	2,2	2,0	4,5	3,8	5,6	3,9	11,2	8,3	

Where:

3.10 Resistance to horizontal load of brackets

Resistance to horizontal load of brackets has been assessed according to section 2.2.12 of EAD 090034-00-0404. Mean and characteristic values are given in table 3.8.

Table 3.8: Bracket resistance to horizontal load.

Bracket type ⁶ (mm)			N) at 1 mm of deflection	Ultimate res	istance (kN)
		Fm	Fc	Fm	Fc
	45/100	5,8	5,1	11,6	9,9
	67/100 (*)	5,0	٥,١	11,0	9,9
	87/100	8,3	7,0	15,4	14,7
EO 4111 4	117/100	10,4	8,4	18,7	15,4
ES-ALU-A ES-ALU-V	148/100	10,6	10,3	20,0	17,4
LO-ALO-V	177/100	10,5	8,2	20,3	18,6
	208/100	10.5	0.7	20.1	10.6
	238/100 (*)	10,5	8,7	20,1	18,6
	267/100	18,2	15,6	18,8	17,0
	238/100 (*)				
FO INOV F	267/100 (*)	44.4	7.5	18,1	16,1
ES-INOX-E	296/100 (*)	11,4	7,5		
	325/100				
	67/200 (*)	5,8	5,1	11,6	9,9
	87/200	16,7	14,0	21,7	20,4
	117/200	9,8	6,1	24,6	23,4
EC ALLE	148/200	13,1	9,0	24,2	23,1
ES-ALU-E	177/200	12,6	9,9	24,9	24,0
	208/200	0.5	4.2	25.4	22.2
	238/200 (*)	8,5	4,2	25,4	23,3
	267/200	24,5	21,8	25,1	22,3
	238/200 (*)				
ES INOV F	267/200	16.0	12.2	22.6	10.0
ES-INOX-E	296/200 (*)	16,9	13,2	23,6	18,0
	325/200				

Where:

 F_m = mean values; F_c = characteristic values giving 75% confidence that 95% of results will be higher than this value.

(*) Bracket not tested. Minimum value is considered.

 F_m = mean values; F_c = characteristic values giving 75% confidence that 95% of results will be higher than this value.

^(*) Bracket not tested. Values from another representative bracket.

^(**) When the bracket includes the thermal bridge break piece (see Annex 4), these resistance values shall be reduced applying a reduction factor = 0,80.

3.11 Mechanical characteristic of subframe fixings

Shear load strength of subframe fixings has been tested (see table 3.6).

Tensile strength of subframe fixing at least meets the values given in table 3.6 for pull-out resistance.

3.12 Corrosion

The GR-CLA fixing devices are made of various metallic elements, as shown in Annex 2. The sheets are made of stainless steel 1.4307 or 1.4404 according to EN 10088, and the threaded screw, set screw, nuts and washers are made of stainless steel, quality A2 or A4 according to EN ISO 3506. In addition, subframe drilling screws are made of stainless steel, quality A2 or A4 according to EN ISO 3506.

Therefore, the GR-CLA fixing devices and subframe screws may be used in dry internal conditions or exposure in permanent damp internal conditions and also in external atmospheric exposure with high category of corrosivity of the atmosphere (including industrial and marine environment, C4 as defined in ISO 9223), if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent or alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

The profiles and ES-ALU brackets are made of aluminum alloy AW 6005A EP/O T6 according to EN 573, EN 1999 and EN 755. The durability is class B and the minimum thickness is 3,0 mm. Therefore, these components may be used in the following external atmospheric exposure: rural environment, moderate industrial/urban environment, but excluding industrial marine environment. These components may be used in other external atmospheric conditions exposure if the components are protected as indicated in EN 1999-1-1.

ES-INOX brackets are made of stainless steel 1.4307 according to EN 10088, Therefore, these brackets may be used in dry internal conditions or exposure in permanent damp internal conditions and also in external atmospheric exposure with high category of corrosivity of the atmosphere (including industrial and marine environment, C4 as defined in ISO 9223), if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent or alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

In addition, special attention should be considered in order to prevent the possible galvanic corrosion.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

According to the decision 2003/640/EC, as amended of the European Commission⁷, the systems of AVCP (see EC delegated regulation (EU) No 568/2014 amending Annex V to Regulation (EU) 305/2011) given in the following table apply.

Table 4.1: Applicable AVPC system.

Product	Intended use	Level or class	System
Subframe and fixing kits for	External finishes of walls	Any	2+
fastening cladding and external wall elements	For uses subject to regulations on reaction to fire	A1	4

⁷ 2003/640/EC – Commission Decision of date 4 September 2003, published in the Official Journal of the European Union (OJEU) L226/21 of 10/09/2003.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

All the necessary technical details for the implementation of the AVCP system are laid down in the *Control Plan* deposited with the ITeC⁸, with which the factory production control shall be in accordance.

Issued in Barcelona on 4 September 2019 by the Catalonia Institute of Construction Technology.

Ferran Bermejo Nualart Technical Director, ITeC

⁸ The Control Plan is a confidential part of the ETA and is only handed over to the notified certification body involved in the assessment and verification of constancy of performance.

ANNEX 1: PF-ALU-CLA assembled system

Figure A1.1: PF-ALU-CLA assembled system. Horizontal joint position.

Figure A1.2: GR-CLA assembled system. Vertical joint position.

ANNEX 2: GR-CLA fixing device

Geometry characteristics						
Form	Fixing devices	GP CLA 20	'3 M8 & M10	See figure A3.1		
FOITH	Dowel protecto		3 WO & W TO	See figure AS. I		
Figure A2.1: G	R-CLA 20/3 M8	& M10 form.				
			Sheet See figure A2.2			
Dimensions	(mm)	Fixing devices GR-CLA 20/3	Threaded screw M8 Threaded screw M10	See figure A2.3		
פווטופוופווטווס	(111111)		Set screw	See figure A2.4 See figure A2.5		
	-	Dowel protector	00.00.0	See figure A2.6		

Material properties		Val	ues	Reference
	Type of material	Stainless steel 1.4307 (X2CrNi18-9)	Stainless steel 1.4404 (X2CrNiMo17-12-2)	EN 10088-1
	Density (kg/m³)	7900	8000	EN 10088-1
	Modulus of elasticity at 20 °C (MPa)	200000	200000	EN 10088-1
	Thermal expansion coefficient at 20 °C-100 °C (µm/m-°C)	16,0	16,0	EN 10088-1
Sheet	Elastic limit R _{p0,2} (MPa)	200	220	EN 10088-2
	Tensile strength R _m (MPa)	500-700	520-670	EN 10088-2
	Elongation A (%)	45	45	EN 10088-2
	Intergranular corrosion resistance at delivery conditions	Yes	Yes	EN 10088-2
	Type of material	Stainless steel quality A2-70	Stainless steel quality A4-80	EN ISO 3506-1
Threaded screw	Elastic limit R _{p0,2} (MPa)	450	600	EN ISO 3506-1
& Set screw	Tensile strength R _m (MPa)	700	800	EN ISO 3506-1
	Elongation A (%)	0,4·d	0,3·d	EN ISO 3506-1
Nive	Type of material	Stainless steel quality A2-70	Stainless steel quality A4-80	EN ISO 3506-1
Nuts	Minimum resistance, s _p (N/mm ²)	700 (Type 1 nuts (m ≥ 0,8·d))	800 (Type 1 nuts $(m \ge 0.8 \cdot d)$)	EN ISO 3506-2
Washers	Type of material	Stainless steel quality A2-70	Stainless steel quality A4-80	EN ISO 887
Dowel protectors	Type of material	LDPE 650 or F	Polyamide PA6	

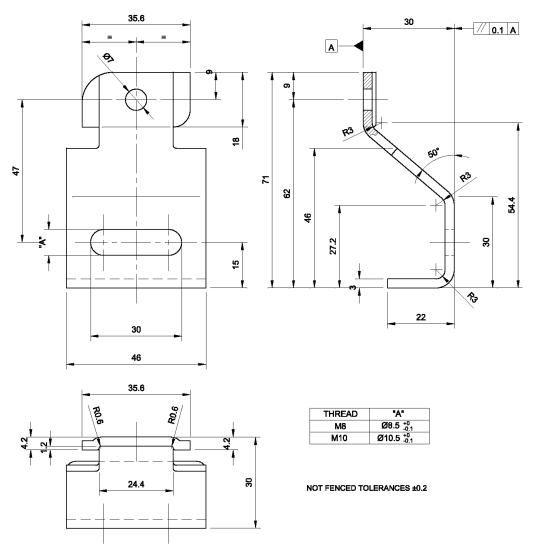


Figure A2.2: Dimensions and tolerances. GR-CLA 20/3 sheet.

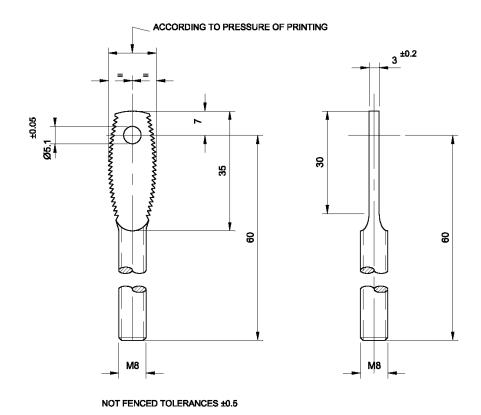


Figure A2.3: Dimensions and tolerances. GR-CLA 20/3 Threaded screw M8.

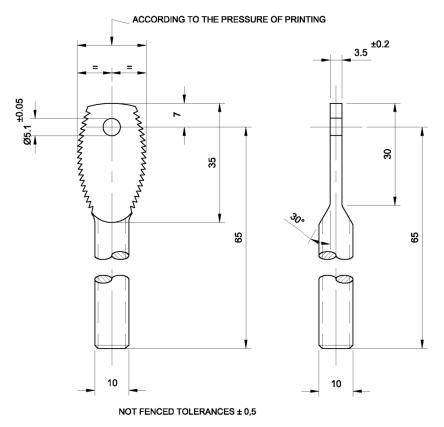


Figure A2.4: Dimensions and tolerances. GR-CLA 20/3 Threaded screw M10.

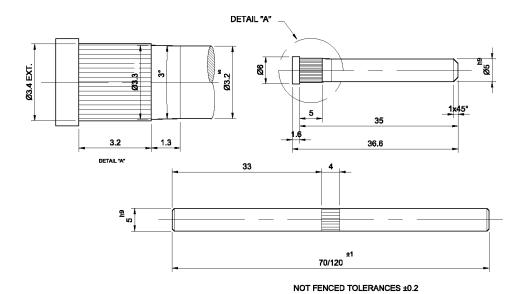


Figure A2.5: Dimensions and tolerances. GR-CLA 20/3 set screw.

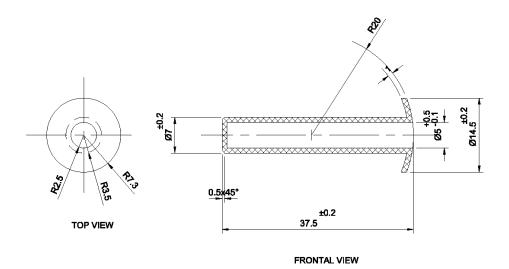


Figure A2.6: Dimensions and tolerances. GR-CLA 20/3 dowel protector.

ANNEX 3: Subframe profiles

Geometry chara	cteristics							
	PF-AL-U-40		, ,	>		>		
	PF-AL-U-60							
	PF-AL-U-80						- 10	
Form	PF-AL-U-100							
	PF-AL-T-60						1	
	PF-AL-T-80			ı	L			
Dimensions		dx (mm)	dy (mm)	L (mm)	L1	L2	Tolerances	
PF-AL-U-40		(mm) 19,8	(mm) 18,4	(mm) 40	(mm) 24,1	(mm) 15,9	(mm) ± 0,15	
PF-AL-U-60		29,4	16,7	60	32,6	24,4	± 0,15	— ————————————————————————————————————
PF-AL-U-80		41,0	15,0	80	43,2	35,0	± 0,15	- Figure A3.1
PF-AL-U-100		51,3	14,5	100	54,1	45,9	± 0,15	_
PF-AL-T-60		22,5	28,3	57	24,4	32,6	± 0,15	- Figure A3.2
PF-AL-T-80		22,6	39,4	78,2	35,0	43,2	± 0,15	
					P-ALU-40			Figure A3.3
					P-ALU-60 P-ALU-80			Figure A3.4 Figure A3.5
Ancillary profiles	between vertical p	rofiles			P-ALU-80			Figure A3.6
					P-AL-T-60			-
					P-AL-T-80			- Figure A3.7
Ancillany profiles	for verticality adjus	tment		ES-/	AL-O-20			- Figure A3.8
Anomary promes	Ancillary profiles for verticality adjustment ES-AL-O-40 Figure A3.8							
Inertia of profile section (cm ⁴)				(cm ⁴)		lyy (cm⁴)		
PF-AL-U-40			9,1			10,8		
PF-AL-U-60			22,5	5		12,2		
PF-AL-U-80			49,3			13,5		
PF-AL-U-100			94,1			16,3		
PF-AL-T-60 PF-AL-T-80			25,2 57,4	<u>′</u>		19,8 25,5		
			5/4	L .		∠5.5		

Material properties	Values	Reference
Type of material	Aluminium alloy EN AW-6005A EP/O T6	EN 1999-1-1
Durability class	Class B	EN 1999-1-1
Density (kg/m³)	2700	EN 1999-1-1
Modulus of elasticity (MPa)	70000	EN 1999-1-1
Thermal expansion coefficient (µm/m-°C)	23,0	EN 1999-1-1
Elastic limit R _{p0,2} (MPa)	225	EN 755-2 & EN 1999-1-1
Tensile strength R _m (MPa)	270	EN 755-2 & EN 1999-1-1
Elongation A (%)	8	EN 755-2 & EN 1999-1-1
Poisson's coefficient	0,3	EN 1999-1-1
Modulus of transversal elasticity, G (MPa)	27000	EN 1999-1-1

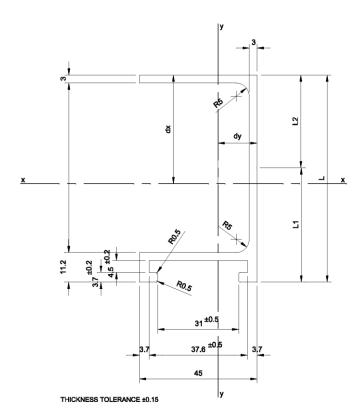


Figure A3.1: Profile PF-AL-U.

Figure A3.2: Profile PF-AL-T.

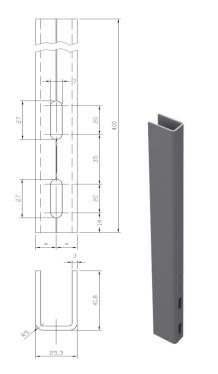


Figure A3.3: Ancillary profile EUP-ALU-40.

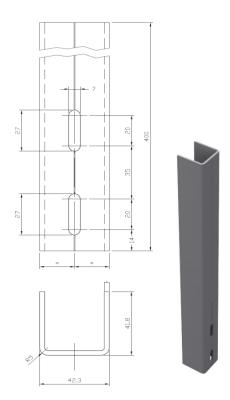


Figure A3.4: Ancillary profile EUP-ALU-60.

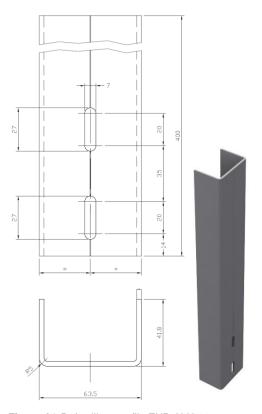


Figure A3.5: Ancillary profile EUP-ALU-80.

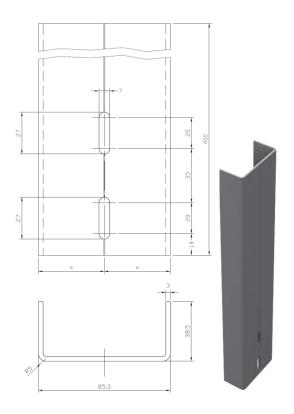


Figure A3.6: Ancillary profile EUP-ALU-100.

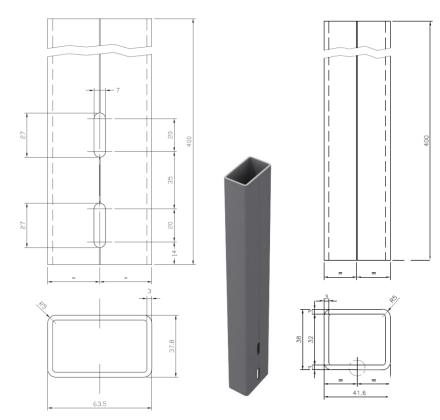
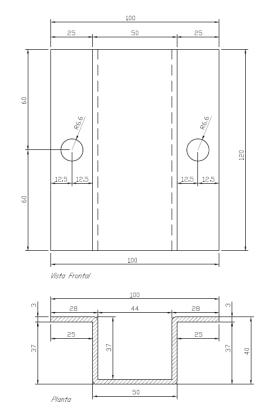



Figure A3.7: Ancillary profile EUP-ALU-T.

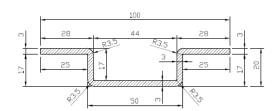


Figure A3.8: Ancillary profile ES-AL-O-20.

Figure A3.9: Ancillary profile ES-AL-O-40.

ANNEX 4: Subframe brackets

A4.1. Aluminium brackets

Geometry char	racteristics					
•		45/100				
	-	67/100				
	-	87/100	400			
	-	117/100				
	ES-ALU-A &	148/100			1	
	ES-ALU-V -	177/100		N. II		
	-	208/100			- 1	
	=	238/100				
	=	267/100	ES-ALU-	Α	ES-A	U-V
_	-	67/200				
Form	-	87/200				
	-	117/200				
	=					
	-	148/200		1		
	ES-ALU-E	177/200				
		208/200				
	_	238/200				
		267/200				
				ES-ALU	J-E	
			1 (1.4 (*****)	Tolerances	
			L (mm)	L1 (mm)	(mm)	
	ES-ALU-A	45/100			± 0,15	Figure A4.1
		67/100			± 0,15	Figure A4.2
		87/100			± 0,15	Figure A4.3
		117/100	117		± 0,15	- - Figure A4.4
		148/100	148	31	± 0,15	
		177/100	177		± 0,15	
		208/100	208		± 0,15	
		238/100			± 0,15	Figure A4.5
		267/100			± 0,15	Figure A4.6
		45/100			± 0,15	Figure A4.7
		67/100			± 0,15	Figure A4.8
		87/100			± 0,15	Figure A4.9
		117/100	117		± 0,15	. iguio / tiio
	ES-ALU-V	148/100	148		± 0,15	_
Dimensions	LO ALO V	177/100	177	31	± 0,15	Figure A4.10
(mm)		208/100	208		± 0,15	_
		238/100			± 0,15	Figure A4.11
		267/100			± 0,15	Figure A4.12
		67/200			± 0,15	Figure A4.13
		87/200			± 0,15	Figure A4.14
		117/200	117		± 0,15 ± 0,15	1 19u1 5 A4. 14
		148/200	148		± 0,15	_
	ES-ALU-E	177/200	177	31	± 0,15 ± 0,15	Figure A4.15
			208			_
		208/200	208		± 0,15	Figure A4.46
		238/200			± 0,15	Figure A4.16
		267/200			± 0,15	Figure A4.17
	Ancillary thermal	Termostop 100				Figure A4.20a
	bridge break piece	Termostop 200				Figure A4.20b

Material properties	Values	Reference
Type of material	Aluminium alloy EN AW-6005A EP/O T6	EN 1999-1-1
Durability class	Class B	EN 1999-1-1
Density (kg/m³)	2700	EN 1999-1-1
Modulus of elasticity (MPa)	70000	EN 1999-1-1
Thermal expansion coefficient (µm/m °C)	23,0	EN 1999-1-1
Elastic limit R _{p0,2} (MPa)	225	EN 755-2 & EN 1999-1-1
Tensile strength R _m (MPa)	270	EN 755-2 & EN 1999-1-1
Elongation A (%)	8	EN 755-2 & EN 1999-1-1
Poisson's coefficient	0,3	EN 1999-1-1
Modulus of transversal elasticity, G (MPa)	27000	EN 1999-1-1

A4.2. Stainless steel brackets

Geometry cha	racteristics							
		238/100						
		267/100	<u>—</u>	-				
	ES-INOX-A	296/100	<u> </u>					
		325/100		ES	S-INOX-A			
Form		238/200		-	•			
	ES-INOX-E	267/200						
		296/200	_					
		325/200		ES-INOX-E				
			, L	, L1 ,	Tolerances			
			(mm)	(mm)	(mm)			
		238/100	238	128	_			
	ES-INOX-A	267/100	267	157	± 0,15	Figure A4.18		
Di		296100	296	186	_	3		
Dimensions		325/100	325	215				
(mm)	ES-INOX-E	238/100 267/100	238 267	128 157	_			
		296100	296	186	— ± 0,15 Figure —	Figure A4.19		
		325/100	325	215		-		

Material properties	Values	Reference
Type of material	Stainless steel 1.4307 (X2CrNi18-9)	EN 10088-1
Density (kg/m³)	7900	EN 10088-1
Modulus of elasticity at 20 °C (MPa)	200000	EN 10088-1
Thermal expansion coefficient at 20 °C-100 °C (μm/m·°C)	16,0	EN 10088-1
Elastic limit R _{p0,2} (MPa)	200	EN 10088-2
Tensile strength R _m (MPa)	500-700	EN 10088-2
Elongation A (%)	45	EN 10088-2
Intergranular corrosion resistance at delivery conditions	Yes	EN 10088-2

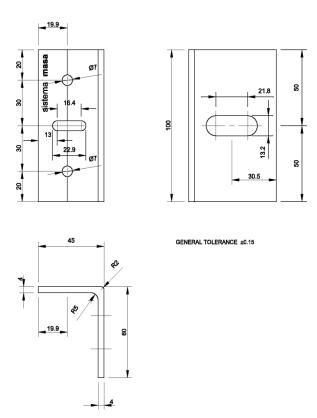


Figure A4.1: Brackets ES-ALU-45/100-A.

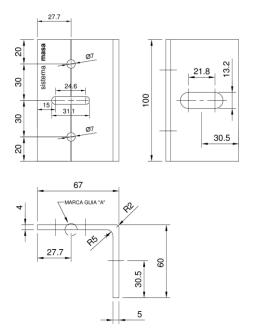


Figure A4.2: Brackets ES-ALU-67/100-A.

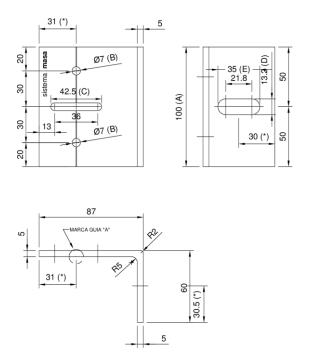


Figure A4.3: Brackets ES-ALU-87/100-A.

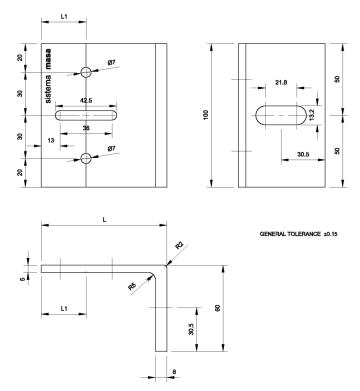


Figure A4.4: Brackets ES-ALU-(117/100; 148/100; 177/100 & 208/100)-A.

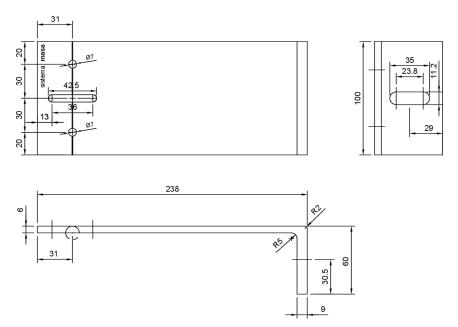


Figure A4.5: Brackets ES-ALU-238/100-A.

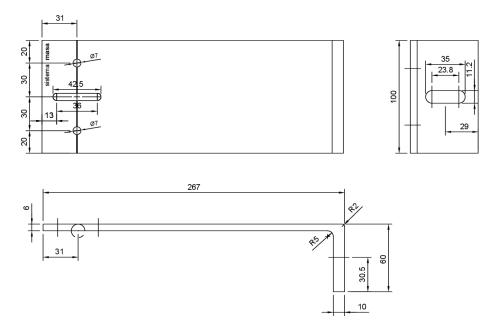


Figure A4.6: Brackets ES-ALU-267/100-A.

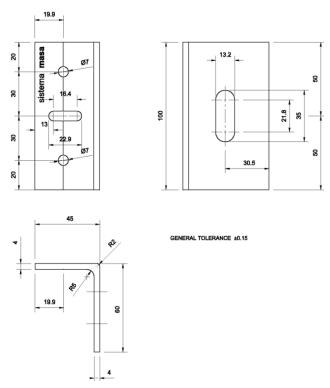


Figure A4.7: Brackets ES-ALU-45/100-V.

Figure A4.8: Brackets ES-ALU-67/100-V.

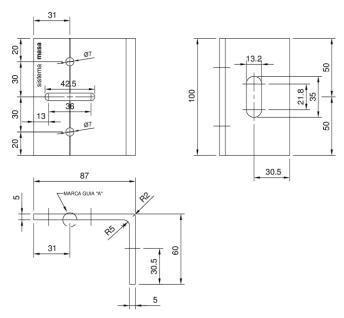


Figure A4.9: Brackets ES-ALU-87/100-V.

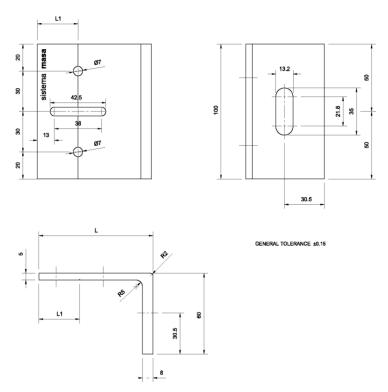


Figure A4.10: Brackets ES-ALU-(117/100; 148/100; 177/100 & 208/100)-V.

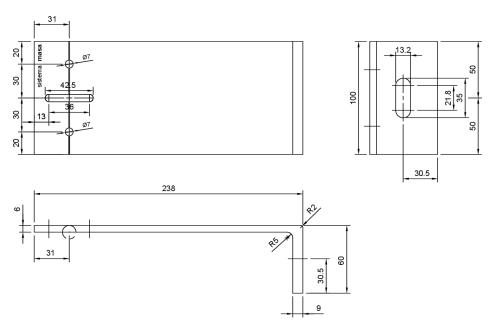


Figure A4.11: Brackets ES-ALU-238-V.

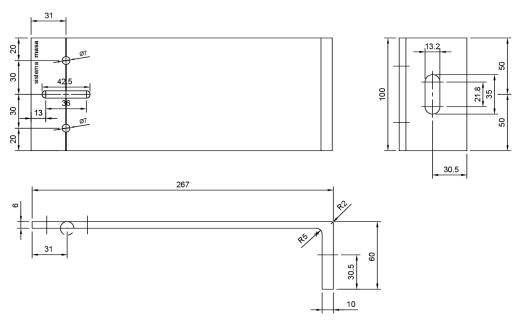


Figure A4.12: Brackets ES-ALU-267-V.

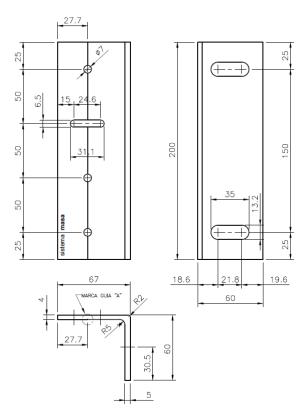


Figure A4.13: Brackets ES-ALU-67/200-E.

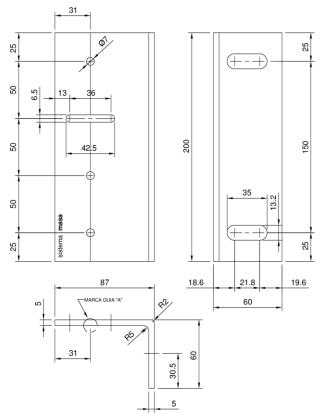


Figure A4.14: Brackets ES-ALU-87/200-E.

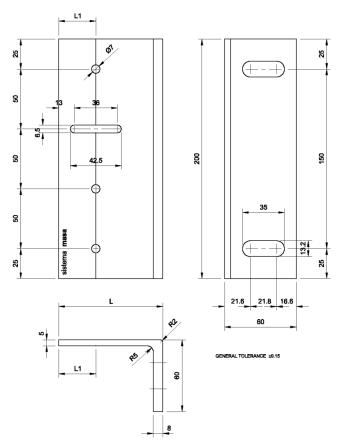


Figure A4.15: Brackets ES-ALU-(117/200; 148/200; 177/200 & 208/200)-E.

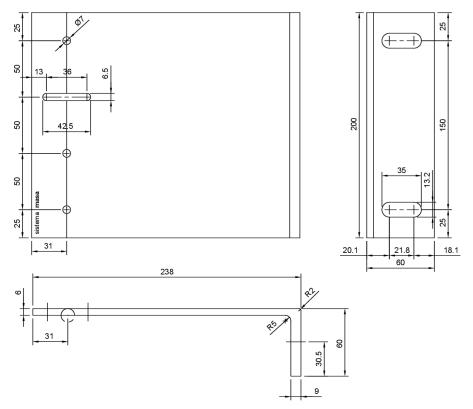


Figure A4.16: Brackets ES-ALU-238/200-E.

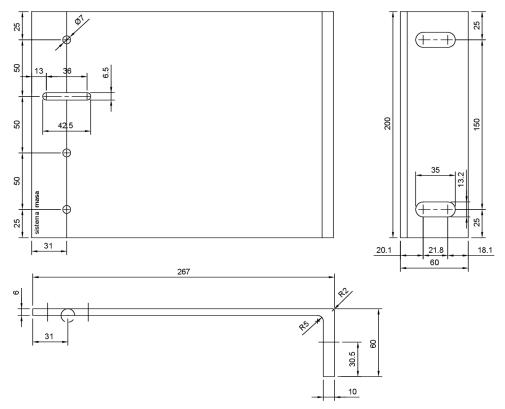


Figure A4.17: Brackets ES-ALU-267/200-E.

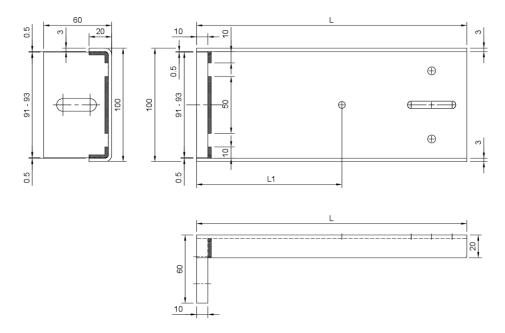


Figure A4.18: Brackets ES-INOX-(238/100; 267/100; 296/100 & 325/100)-A.

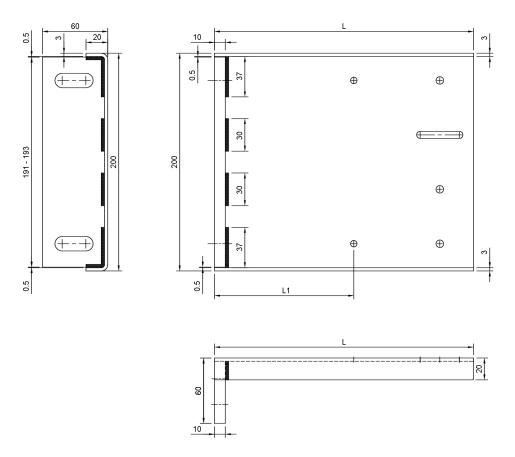
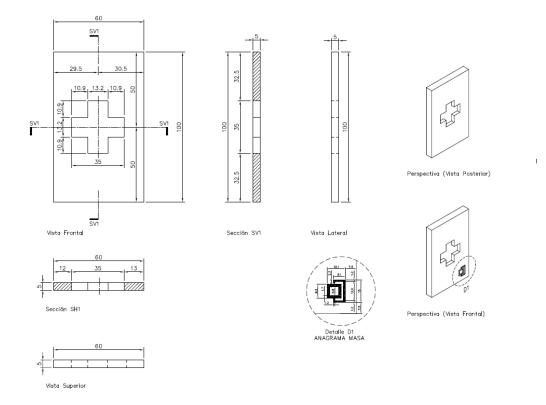



Figure A4.19: Brackets ES-INOX-(238/200; 267/200; 296/200 & 325/200)-E.

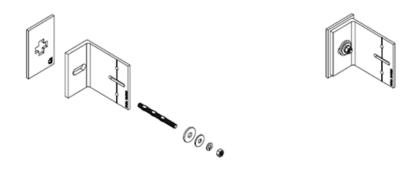


Figure A4.20a: Thermal bridge break piece. Termostop 100.

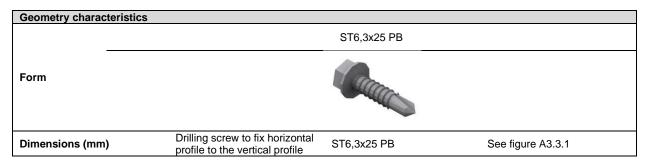



Figure A4.20b: Thermal bridge break piece. Termostop 200.

ANNEX 5: Subframe fixings and other components

A5.1. Subframe screws

Material properties	Val	ues	Reference	
Type of material	Stainless steel Quality A2-70	Stainless steel Quality A4-80	EN ISO 3506-1	
Elastic limit R _{p0,2} (MPa)	450	600	EN ISO 3506-1	
Tensile strength R _m (MPa)	700	800	EN ISO 3506-1	
Elongation A (%)	0,4·d	0,3·d	EN ISO 3506-1	
Thread characteristics	According to reference standard		EN ISO 3506-4	
Form characteristics of the hexagon washer head screw	According to reference standard		EN ISO 15480	
Drill hole characteristics	According to ref	erence standard	EN ISO 10666	

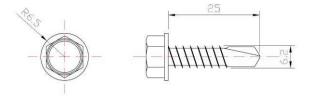


Figure A3.3.1: Screw ST6,3x25 PB.

A5.2. Other components

Other products that do not pertain to the kit but they are needed for the execution of the PF-ALU-CLA kit in the works are the fixings between the brackets and the substrate. The main specifications to be met by these products to be used with the kit are:

- Fixings must be chosen according to the substrate or supporting structure material (concrete, masonry, timber or metal frame, etc.) and the resistance required due to wind load and dead load (pull-out and shear strength respectively).
- Minimum fixing diameter 8 mm. Minimum washer diameter 16 mm.
- Required minimum pull-out strength on substrate material: 4,0 kN.
- Required minimum shear strength: 4,0 kN.
- Fixings between the brackets and the substrate may be CE marked according to an ETA on the basis of the relevant EAD (see www.eota.eu) as long as this CE marking is mandatory in the Member State where the kit is used.

ANNEX 6: Design, installation, maintenance and repair criteria

A6.1 Design

The design of the subframe and fixings for fastener external skin elements using PF-ALU-CLA kit should consider:

- For fastening cladding elements (the subframe is fixed on structural floors and also on a subframe wall), all the kit components defined in Annexes 2 to 5 may be used. However, for the fastening of wall elements, if the subframe is fixed only between structural floors, the vertical profiles and bracket types less than 80 should be avoided (e.g. profiles PF-AL-U-40, PF-AL-U-60 & PF-AL-T-60 and brackets ES-ALU-45 & ES-ALU-67).
- The vertical profiles must not be used with the brackets of lower dimensions (e.g. profile PF-AL-U-80 can be used with brackets ES-ALU-87 to ES-ALU-325 and ES-INOX-238 to ES-INOX-325 but cannot be used with bracket ES-ALU-67).
- PF-ALU-CLA kit is to be used for skin elements with dowel hole and thickness between 30 mm to 50 mm. The maximum weight and area shall be determined according to the mechanical properties of the kit components declared in this ETA (see sections 3.4 to 3.11). The maximum density that can be considered is 3000 kg/m³.
- The dowel hole (∅ = 8 mm) shall be situated in the middle axis of the skin element thickness. On each dimension "A" (length or width) of the skin element, it should be positioned between A/4 and A/5 of the skin element edge.
- It is assumed that the substrate wall meets the necessary requirements regarding the mechanical strength (resistance to static and dynamic loads) and airtightness, as well as the relevant resistance regarding watertightness and water vapour.
- It is assumed that the skin element meets the necessary requirements regarding the mechanical resistance and hygrothermal behaviour.
- The verification of the designed system by means of calculation, taking into account the mechanical characteristic values of the kit components in order to resist the actions (dead loads, wind loads, etc.) applying on the specific works. National safety factors and other national provisions must be followed.
- The selection and verification of the anchors between the brackets and the external walls (substrate), taking into account the substrate material and the minimum resistance required (pull-out and shear resistance) according to the envisaged actions obtained from the mechanical calculation of the designed system.
- The accommodation of the designed system movements to the substrate or structural movements.
- The execution of singular parts of the façade.
- The corrosion protection of the designed system metallic components taking into account the category of corrosivity of the atmosphere of works (e.g. acc. ISO 9223).
- The drainability of the ventilated air space between the skin elements and the insulation layer or the external wall accordingly.
- An insulation layer is usually fixed on the external wall and should be defined in accordance with a harmonized standard or a European technical assessment.
- When the skin element joints are not watertight, the first layer behind ventilated air space (e.g. insulation layer) should be composed by materials with low water absorption.

A6.2 Installation

Installation of the subframe and fixings for fastener external skin elements using PF-ALU-CLA kit should be carried out:

- According to the specifications of the manufacturer and using the components specified in this ETA.
- In accordance with the design and drawings prepared for the specific works. The manufacturer should ensure that the information on these provisions is given to those concerned.

 By appropriately qualified staff and under the supervision of the technical responsible of the specific works.

A6.3 Maintenance and repair

Maintenance of the subframe and fixings for fastener external skin elements using PF-ALU-CLA kit includes inspections on site, taking into account the following aspects:

- the appearance of any permanent irreversible deformation.
- the presence of corrosion or presence of water accumulation.

When necessary, any repair to localized damaged areas must be carried out with the same components and following the repair instructions given by the manufacturer.